

Tetrahedron Letters 41 (2000) 4757-4761

TETRAHEDRON LETTERS

The first direct ammonolysis of 2-thiouracil nucleosides to 2-thiocytosine nucleosides

Lucjan Strekowski,* Ibrahim M. Abdou,[†] Adel M. E. Attia[‡] and Steven E. Patterson

Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, USA

Received 11 February 2000; accepted 24 April 2000

Abstract

Sugar-peracetylated 1-(β -D-glucopyranosyl)-, 1-(β -D-galactopyranosyl)-, and 1-(β -D-xylopyranosyl)-6-aryl-5-cyano-2-thiouracils **2–4** and the corresponding 1-pyranosyl-2-(pyranosylthio)pyrimidines **5–7** undergo efficient ammonolysis (NH₃/MeOH, 0 \rightarrow 23°C, 16 h) to give the corresponding 1-(β -D-pyranosyl)-6-aryl-5-cyano-2-thiocytosines. © 2000 Elsevier Science Ltd. All rights reserved.

Keywords: 6-aryl-5-cyano-2-thiouracils; 1-(β-D-pyranosyl)-2-thiocytosines.

Unnatural nucleosides continue to draw attention as potential biologically active agents, and many diverse structures are being designed and synthesized. In particular, it has been reported recently¹ that the reaction of a dianion derived from a 2-thiouracil **1** with 2,3,4,6-tetra-*O*-acetyl- α -D-glucopyranosyl bromide or its α -D-galactopyranosyl isomer gives the corresponding $N3,S^2$ -bis(pyranosyl)pyrimidin-4-one **11** (Scheme 1). It has also been claimed that the treatment of these products with ammonia in methanol furnishes the corresponding N3-pyranosyluracils.

In this paper, we report a reinvestigation of the research discussed above and show that the bisnucleosides (the major products) derived from 1 are $N1,S^2$ -bis(pyranosyl) derivatives 5 and 6 rather than the claimed $N3,S^2$ -isomers 11 and they are accompanied by N1-pyranosylpyrimidines 2 and 3. Xylopyranosylpyrimidines of analogous structures 4 and 7 were also obtained as part of this work (Scheme 1). Most important, however, in our hands the deacetylation of 2–7 by treatment with ammonia in methanol, in addition to removal of the pyranosyl function from the S^2 atom at the pyrimidine of 5–7, was also accompanied by an unprecedented ammonolysis to furnish N1-(β -D-pyranosyl)-2-thiocytosines 8–10 in high yields. These results are fundamentally different from those reported, and consistent results were obtained in all cases studied.

^{*} Corresponding author. Tel: 404-651-0999; fax: 404-651-1416; e-mail: lucjan@gsu.edu

[†] Present address: School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA.

[‡] Present address: Chemistry Department, Faculty of Education, Tanta University, Kafr El-Sheikh Branch, Egypt.

Our findings have important ramifications for the synthesis of novel cytosine nucleosides and analogs. First, in addition to the starting materials **1**, a large number of other 5-cyano-2-thiouracils are readily available.^{1–3} Second, the products **8–10** are potential substrates for the preparation of nucleosides that contain a fused heterocyclic system because the 4-amino-5-cyano functionality is a well known synthon for annulation of the pyrimidine to pyrazolopyrimidines, pyridopyrimidines, and pyrimidopyrimidines.⁴

The treatment of a solution of 1 (Ar = Ph, 10 mmol) and KOH (22 mmol) in water (6 mL) with 2,3,4,6-tetra-*O*-acetyl- α -D-glucopyranosyl bromide (22 mmol) in acetone (30 mL) and stirring the mixture¹ (25°C, 4 h) resulted in the disappearance of 1 and the formation of two products that

were separated by silica gel chromatography (hexanes:ether:chloroform, 1:2:2). The structures of the major and minor products were established as 5a and 2a, respectively, by elemental analyses, IR, and ¹H NMR including COSY and NOESY methods. In particular, the IR spectrum of **2a** shows absorptions for acetoxy carbonyl groups $(1720-1750 \text{ cm}^{-1})$, and a strong signal at 1698 cm^{-1} that is also present in the IR spectrum of 1 and characteristic for the pyrimidin-4-one.⁵ In the ¹H NMR spectrum of 2a the anomeric proton H1' of the glucopyranosyl moiety gives a doublet at δ 5.99 with a coupling constant J(H1'-H2') of 10.9 Hz for the diaxial interaction. First, this large coupling constant is characteristic for a β -glucopyranosyl anomer.⁶ Second, the chemical shift is typical for N1-substitution of 2-thiouracils, and the structurally related N3-substituted 2-thiouracils give a resonance for H1' at a much lower magnetic field.⁷ The N1-substitution in 2awas confirmed by an NOE experiment in which the irradiation at δ 5.99 for H1' gave a strong signal at δ 8.08 corresponding to *ortho* protons of the adjacent phenyl group. Additional enhancements were observed at δ 5.35 and 5.15 for H3' and H5', respectively, and all these interactions were confirmed by analysis of the NOESY spectrum of 2a. These conclusions derived from the NOE studies are fully supported by the results of molecular modeling by using a PC Model program. The conformational analysis of 2a gave two low-energy conformations, syn (shown) and *anti*, in both of which the plane of the pyrimidine bisects the sugar moiety while the phenyl ring is twisted relative to the pyrimidine. In the more stable (by 0.15 kcal/mol) energyminimized syn-structure the distances between H1' of the sugar and the ortho protons of the phenyl are 2.59 and 3.84 A, which is fully consistent with the observed NOE enhancements. By contrast, such distances are beyond the limit of NOE interactions for the alternative N3-isomer of **2a**. In the ¹H NMR spectrum of **5a** a doublet for H1' at δ 5.98, J(H1'-H2') = 10.4 Hz, is indicative of the presence of the β -glucopyranosyl moiety at position N1 of the pyrimidine, as in **2a**. Analysis of the NOESY spectrum of 5a confirmed this result. The chemical shift for the anomeric proton H1" of the second β -glucopyranosyl group in **5a** at δ 6.50 is too small for an N3-nucleoside, and the O^4 -nucleoside can be ruled out on the basis of a strong infrared absorption at 1685 cm⁻¹.

Interestingly, the reaction of 1 (Ar=Ph, 1 equiv.) in the presence of KOH (2.2 equiv.) with increasing amounts of 2,3,4,6-tetra-O-acetyl- α -D-glucopyranosyl bromide, from 0.5 equiv. to 2.2 equiv. required for a consumption of 1, always furnished a mixture of **2a** and **5a**. It can be suggested that **2a** and an S²-linked mononucleoside are formed initially and both compounds are precursors to **5a**. Consistent with this suggestion are calculated HOMO electron densities for anions derived from 1 (Ar=Ph) and its S-methyl derivative (Fig. 1). The latter compound is a model for the presumed S²-linked mononucleoside. As can be seen, the sulfur atom in the dianion 1-N1⁻N3⁻ and monoanions 1-N1⁻, 1-N3⁻ is the most nucleophilic site. A competitive formation of the N1-nucleoside **2a** from each of the monoanions should be possible, as observed. On the basis of the calculated HOMO electron densities and the favorable heat of formation for **MeS1⁻** the presumed S²-nucleoside should be easily transformed into the N1,S²-bis-nucleoside **5a**, also as observed.

Ammonolysis of mononucleosides 2–4, dinucleosides 5–7 or the mixtures 2/5, 3/6 and 4/7 furnished the corresponding 1-(β -D-pyranosyl)-2-thiocytosines 8–10 in yields of 84–87%. In a typical experiment a solution of 5a (1 mmol) in MeOH (10 mL) was added at 0°C to a saturated solution of NH₃ in MeOH (25 mL) and the mixture was stirred at 0°C for 4 h and then at 23°C for an additional 12 h. Concentration followed by silica gel chromatography (MeOH:CHCl₃, 1:19) gave 8a. Analysis of the NOESY spectra showed that products 8–10 contain a pyranosyl moiety linked to N1 of the pyrimidine. The experimental and computer-simulated ¹³C NMR spectra of 8–10 closely matched each other. In comparison to the infrared spectra of 2–7, the 2-thiocytosine nucleosides 8–10 lack absorption at 1680–1690 cm⁻¹ that is characteristic for

the pyrimidin-4-one. Their IR spectra are dominated by strong CN, OH, and NH₂ absorptions. Two sets of resonances for OH and NH₂, both exchangeable with D₂O, are observed in the ¹H NMR spectra of **8–10** as well.[§]

The suggested mechanism for 8–10 is given in Scheme 2. Removal of a sugar moiety from Snucleosides under certain basic/nucleophilic conditions to give an anion such as 12 is well known.^{7–9} In addition to the standard deacetylation at the pyranosyl moiety of 12, the cyano group of 12 may also undergo an addition reaction with ammonia to generate an amidine 13. The subsequent intramolecular cyclization of 13 to 14 is consistent with the computational work of Fig. 1 which shows that the C4 atom in the analogous anion $1-N3^-$ is electrophilic in nature. Elimination of hydroxide ion from 14 ($sp^3-C4 \rightarrow sp^2-C4$) would generate a less strained system 15 which is the suggested precursor to 8–10.

Figure 1. Calculated (PM3-AQ) HOMO electron densities for anions derived from 1 (Ar=Ph) and **MeS1** by deprotonation at the indicated sites. H denotes the calculated heat of formation

⁸ Products **2**–7 and **8**–10 were crystallized from 95% EtOH and 95% MeOH, respectively. All compounds gave satisfactory microanalysis results (C, ±0.3; H, ±0.2; N, ±0.2; S, ±0.3) as exemplified for **8a**·1.5 H₂O. Calcd/found: C, 48.92/48.84; H, 5.03/5.10; N, 13.42/13.33; S, 7.67/7.73. The elemental analysis of the remaining compounds **2**–10 also showed the presence of crystallization water that was demonstrated independently by the use of ¹H NMR. All yields given below are for analytically pure products. The yields of **8**–10 are for ammonolysis of the respective mixtures **2a/5a**, **2b/5b**, **3/6** and **4**/7. Compound, yield, mp, α_D^{25} (*c*=2 mg/mL, CHCl₃ for **2**–7 and MeOH for **8**–10): **2a**·2H₂O, 20%, 214–216°C, 38.3; **2b**·2H₂O, 30%, 189–192°C, 23.0; **3**·2.5 H₂O, 23%, 232–234°C, 36.4; **4**·H₂O, 20%, 165–168°C, 26.7; **5a**·0.5 H₂O, 40%, 114–116°C, 45.0; **5b**·0.5H₂O, 40%, 118–120°C, 38.0; **6**·H₂O, 35%, 128–130°C, 23.0; **7**·H₂O, 35%, 123–125°C, 21.6; **8a**·1.5H₂O, 86%, 190–193°C, 21.0; **8b**·2H₂O, 86%, 190–193°C, 25.5; **9**·1.5H₂O, 87%, 192–195°C, 22.6; **10**·2H₂O, 84%, 196–198°C, 16.8. Selected ¹H NMR spectra (400 MHz, 25°C, CDCl₃/TMS): **2a**, δ 1.90–2.14 (4s, 12H), 4.03 (m, 2H), 4.43 (s, 1H), 5.15 (m, 1H), 5.54 (m, 1H), 5.99 (d, J=10.9 Hz, 1H), 7.64 (m, 3H), 8.08 (m, 2H); **5a**, δ 1.83–2.01 (8s, 24H), 4.25 (m, 6H), 5.11 (m, 4H), 5.55 (m, 2H), 5.98 (d, J=10.4 Hz, 1H), 6.50 (d, J=8.0 Hz, 1H), 7.62 (m, 3H), 8.08 (m, 2H); **5a**, δ 3.21 (m, 4H), 3.48 (m, 1H), 3.68 (m, 1H), 4.80 (m, exchangeable with D₂O, 4H), 5.37 (d, J=10.0 Hz, 1H), 7.18 (bs, exchangeable with D₂O, 2H), 7.47 (m, 3H), 7.80 (m, 2H).

References

- 1. Khodair, A. I.; Ibrahim, E. E.; El Ashry, E. S. H. Nucleosides Nucleotides 1997, 16, 433–444, and references cited therein.
- 2. Vanden Berghe, D. A.; Vlietinck, A. J. J. Heterocycl. Chem. 1984, 21, 1307-1312.
- 3. Navio, J. L. G.; Lorente, A.; Soto, J. L. Heterocycles 1982, 19, 305-310.
- 4. Fikry, R. M. J. Indian Chem. Soc. 1996, 73, 698-699, and references cited therein.
- 5. Winkley, M. W.; Robins, R. K. J. Org. Chem. 1968, 33, 2822-2827.
- 6. Abdel-Megeed, M. F.; Salaeh, M. A.; Aly, Y. L.; Abdo, I. M. Nucleosides Nucleotides 1995, 14, 1985–1996.
- 7. Niedballa, U.; Vorbrüggen, H. J. Org. Chem. 1974, 39, 3660-3663.
- 8. Vorbrüggen, H.; Strehlke, P. Chem. Ber. 1973, 106, 3039-3045.
- 9. Ueda, T.; Nishino, H. J. Am. Chem. Soc. 1968, 90, 1678-1681.